安诺基因
公司建立了包含PromethION、PacBio Sequel、NovaSeq 6000、HiSeq X等
新一代测序仪的高通量测序平台,并与Illumina联合开发了
新一代桌面测序仪NextSeq 550AR,可以对DNA、RNA等不
同分子类型的样本进行测序分析,具备检测大批量样本的能力。
2022年3月,中国科学院动物学研究所干细胞与生殖生物学国家重点实验室焦建伟老师、王雁玲老师及北京大学杜鹏老师、靳蕾老师在知名期刊Cell Stem Cell(IF: 24.633)在线发表了题为“Decoding the temporal and regional specification of microglia in the developing human brain”的研究文章,通过对人类胚胎各脑区的小胶质细胞的单细胞转录组分析,全面地揭秘了发育阶段人脑小胶质细胞的区域特异性和状态转换的时空动力学,并在和小鼠联合分析中,比较了两物种间状态转换的保守性和分子差异。安诺优达为本次研究提供了10X单细胞转录组测序服务。
研究背景
在脑部发育和神经炎症领域,作为中枢神经系统(CNS)的天然免疫细胞——小胶质细胞发挥着重要的作用,然而卵黄囊组织中相同红髓系祖细胞的小胶质细胞在四个脑区(大脑皮层、间脑、中脑和小脑)的发育路径、状态转换、相关功能特征等领域的研究尚不清楚。
在小鼠的scRNA-seq研究中,小胶质细胞高度异质性和发育相关复杂性的特点已得到证实。此次研究者以人类胚胎不同脑区的小胶质细胞为研究对象,首次发现小胶质细胞在早期胚胎发育中的状态转变,并评估了不同物种之间状态转换的保守性和分子差异。
实验材料
人类胚胎Carnegie Stage (CS) 12卵黄囊和头部组织;
不同孕期的不同脑区包括大脑、间脑、中脑、小脑。
测序策略
10x Genomics单细胞转录组测序
研究思路
研究结果
小胶质细胞单细胞转录组图谱的构建
研究者使用10X单细胞转录组测序技术构建了人类胚胎脑部小胶质细胞的单细胞转录组图谱,根据分选出的CD45+CD33+ 细胞,对卵黄囊、头部组织、在多个原肠胚形成周的大脑不同解剖位置多位置成分进行分析,识别出20个cluster,成功定义起源、增殖、免疫应答和神经元基因富集四大类小胶质细胞。源于卵黄囊的早期小胶质祖细胞,在人类CS12胚胎的头部表现出细胞增殖、免疫反应和神经系统发育三个明显的分化潜能。
图1 人脑不同发育区域小胶质细胞的scRNA序列和小胶质祖细胞的早期发育
两个小胶质细胞区域规范的发育轨迹——神经元基因富集和免疫
在大脑发育的不同阶段,富含神经元基因的小胶质细胞早在GW8短暂地出现过;免疫小胶质细胞也在后期(GW23左右)表现出其区域特异性。
因此通过Monocle2和URD进行拟时间分析,重现同组CS12原始髓系祖细胞的神经元基因富集和免疫相关小胶质细胞的发育轨迹,结果表明来自CS12卵黄囊和头部(C2/C3)的小胶质祖细胞首先开始增殖,形成不同周期阶段(C6/C9/C10)的小胶质细胞,从而向免疫和神经元基因富集两种分化方向过渡。
图2 小胶质细胞区域特异性的发育轨迹
免疫相关区域特异性小胶质细胞的独特特征
研究者进一步对两类区域特异性小胶质细胞进行探索。富含免疫或神经元基因富集的小胶质细胞携带转录组信息不同,这可能与中枢神经系统早期发育四个脑区的各种功能和动态微环境有关。为更准确分析胎儿中枢神经系统早期发育小胶质细胞的状态转换,使用FACS和10x单细胞转录组测序,从Cor区分离并富集CD45IntCD11Bpos阳性细胞,最后获得25891个小胶质细胞,从而利用新发现的亚群更全面地构建了大脑皮层小胶质细胞的高分辨率发育图谱。
胎儿小胶质细胞的区域特异性和状态转换之间也表现出了明显的潜在联系。干扰人类小胶质细胞内稳态基因可使人类小胶质细胞从相对静息状态退出,过渡到激活状态。经典稳态基因SLC2A5与CNS疾病相关的基因的高表达共同诱导激活了免疫相关的小胶质细胞簇,从而揭示出胎儿脑部特异性的小胶质细胞的独特特征。
图3 区域特异性小胶质细胞的独特特征
图4 区域特异性的胎儿小胶质细胞静息——激活状态改变
人和小鼠发育中状态转换存在保守性和分子特征差异
选用小鼠卵黄囊(E8.5)、头部组织(E9.5)及大脑Cor组织(E10.5-P20)的Cd45intCd11bpos细胞进行单细胞转录组测序,人类小胶质细胞通过激活CX3CR1、TMEM119和P2RY12/13的表达,在GW8开始获得内稳态。诱导典型的小胶质细胞激活基因,可使其在GW23被沉默,这代表人类胚胎活动状态的转变。小鼠中静息相关基因的诱导主要发生在E13.5,直至小鼠出生这些基因才出现减少,小胶质细胞进入活跃期。因此发育的小胶质细胞在静息——激活状态转换是保守的,但分子特征是不同的。
巨噬细胞相关基因方面,LYVE1、MRC1和F13A1在人类早期YS或head中的表达最高,然后逐渐降低。相比之下,小鼠Lyve1、Mrc1和F13a1基因表达在E10.5中高度富集,在早期胚胎发育中下降。人类 CS12-Head在转录组水平上与小鼠E10.5最相似。大多数其他细胞类型可以合并,人类和小鼠的几种细胞类型和发育途径也是保守的。
进一步DEGs的分析表明,人和小鼠小胶质细胞间在物种特异性基因的表达、功能亚类上存在确定性的差异。基因集富集分析(GSEA)显示,人类的细胞粘附分数、细胞因子相互作用、MAPK信号通路和Toll样信号通路更丰富。此外,研究者还鉴定出了PT-MG、AR-MG、CM-MG、MiR-MG和SP-MG集群中的人类和小鼠DEG。
图5 人和小鼠小胶质细胞在发育中状态转换的保守性
图6 人和小鼠小胶质细胞分子特征的差异
总结
作者通过对发育中的人类胚胎各脑区的小胶质细胞的单细胞转录组分析,并结合实验验证,首次定义并描述了区域规范和状态转换相关的小胶质细胞的发育轨迹;在神经元基因富集相关的小胶质细胞中,重新鉴定出了几个具有区域特异性的相关亚类;在免疫相关的小胶质细胞中,它们在中枢神经系统发育的后期表现出区域特异性,同时它们也出现了静息——激活状态的改变;此外,人和小鼠小胶质细胞在发育中状态转换具有保守性,但存在分子差异。
参考文献
Yanxin Li, Zhongqiu Li, Min Yang, etal.Decoding the temporal and regional specification of microglia in the developing human brain[J]. Cell Stem Cell,2022.
2021年12月,北京林业大学生物科学与技术学院联合安诺优达在国际知名期刊Cell(IF:41.582)在线发表了题为“The Chinese pine genome and methylome unveil key features of conifer evolution”的研究文章,研究者对油松进行了染色体水平的基因组组装和注释,绘制了油松基因组的染色体甲基化图谱,为油松独特适应性和发育研究、生殖生物学研究及基因组辅助育种进化和基因组学研究提供了重要参考。安诺优达深度参与了本次研究,包括PacBio三代测序、Hi-C辅助组装以及RNA-seq、WGBS等多组学测序及该基因组的组装、注释等研究。
研究背景
针叶树在世界森林生态系统中占主导地位,是种植最广泛的树种之一。针叶树基因组属于大型基因组,存在高度重复序列(70%-80%),因此基因组组装难度较高。
研究者利用PacBio测序、Hi-C辅助组装等技术,组装获得了25.4 Gb染色体水平的油松基因组。通过使用来自760个生物样本的大规模RNA-seq数据来辅助基因结构注释,揭示油松基因组扩展、生殖过程和适应性进化的多重基因组特征和分子机制,给针叶树进化研究提供了新思路,为今后进一步开展针叶树适应与发育研究提供了数据参考。
材料选择
35年生无性系优良油松的新芽
测序策略
DNA测序策略
Illumina NovaSeq 6000,DNA小片段文库,103 X
PacBio Sequel II基因组测序,103 X
Illumina NovaSeq 6000,Hi-C文库
RNA测序策略
Illumina测序,构建RNA文库
技术路线
研究结果
油松染色体基因组组装和注释
研究者首先通过Illumina测序,对油松基因组大小进行评估,随后利用PacBio测序数据进行自校正和组装,成功构建出24.4 Gb(96.1%,12条染色体)的油松高质量的染色体水平基因组。
针叶树中的基因通常多于二倍体被子植物,基因复制导致了许多基因家族的扩张。在基因复制的不同类别中,油松的旁系同源主要来源于分散重复(DSD),很少来自全基因组复制(WGD),油松发生近期全基因组复制事件概率较低。
图1 油松高质量基因组组装
长内含子的独特基因空间结构
油松的基因组存在大量的长内含子,总内含子/外显子长度与基因组的大小呈正相关,基因表达水平的差异与基因长度和内含子数有关。长基因的RNA剪接和DNA甲基化检测结果表明,几乎所有CG和CHG位点都发生了甲基化,DNA甲基化可能参与了长内含子的准确识别。
图2 油松基因组的基因空间结构和复杂性展示
油松的适应进化
通过功能富集分析发现了3,623个显著扩张的家族基因,主要参与生物和非生物胁迫反应。通过鉴定油松中的转录因子(TF)和转录调节因子(TR)家族,发现对低温高度敏感的AP2/ERF基因家族成员可能在油松的低温适应中发挥关键作用。在候选基因编码酶鉴定中,萜烯合成相关基因在不同树龄的油松中有明显的表达模式,新形成的针叶可能是萜烯的主要合成部位。
图3 油松中萜烯的合成途径
针叶树生殖发育的独特调控网络
被子植物中具有很多调节开花的关键基因,但油松中缺少很多同源基因。FT/TFL1-like基因是被子植物中调节开花的关键基因,但油松中仅有2个拷贝,但在其他针叶树中一般有4-6个拷贝。研究者在拟南芥中做了转基因验证,过表达了这两个基因,转基因植株表现出明显的晚开花表型。
通过对油松基因组中12个高表达的MADS-box基因的酵母双杂交检测,发现两个AGL6-like基因(PtDAL1和PtDAL14)在油松中有不同的表达模式,其中PtDAL14在生殖器官中特异性表达,与其他MADS-box转录因子蛋白相互作用,表明AGL6-like基因可能作为MADS-box转录因子之间相互作用的桥梁,从而形成互作网络。最后研究者提出了一个控制油松雌雄球果发育的模型,为今后针叶树生殖发育研究提供了一张蓝图。
图4 油松中12个MADS-box家族转录因子的表达及蛋白互作模型
油松近期的LTR-RT的爆发和稳定的甲基化维持系统
从染色体层面看,基因组甲基化水平与油松的TE覆盖率显著相关,研究发现携带TE的基因区域的平均甲基化水平远高于不携带TE的基因区域,但TSS和TES区域的平均甲基化水平始终较低。DNA甲基化对于TE基因组的扩张产生了影响,但未有证据表明,油松甲基化程度随树龄的增加而下降。LTR-RTs代表了大部分TEs,不平等重组(UR)是植物中一种重要的LTR-RT清除机制,针叶树的UR率可能比被子植物小型基因组低得多,SGS3-RDR6-RdDM通路可能是针叶树中主要的DNA甲基化途径。
图5 油松中DNA甲基化及转座子扩张
研究结论
研究者构建了当前大型基因组中连续性最好的高质量染色体水平的油松基因组。研究发现转座子的不断扩张和缓慢清除是导致针叶树基因组巨大的重要原因,具有超长内含子的大基因往往表达水平较高。与被子植物相比,油松具有独特的生殖系统。油松基因组的构建为其独特适应性和发育研究、生殖生物学研究及基因组辅助育种进化和基因组学研究提供了重要参考。
作为国内基因组行业知名企业,安诺优达拥有实力强大的测序服务平台,配备系列先进仪器设备,三代PacBio(2台Sequel IIe+7台Sequel II+10台Sequel)为您的科研之路保驾护航;专业的生物信息分析团队,丰富的项目分析经验,让您的数据分析之途无忧。安诺基因已与中国农业大学、中科院遗传与发育所、中国海洋大学、中国农业科学院、福建农林大学等多家科研院所开展了深度合作,助力基因组文章发表于Cell、Nature、Nature Genetics、Nature Plants等多个国际高水平期刊。
参考文献
[1] Niu S.H., Li J., Bo W.H., Yang W.F., Zuccolo A.,Giacomello S., ChenX., Han F.X., Yang J.H., Song Y.T., Nie Y.M., Zhou B.,Wang P.Y., Zuo Q., Zhang H., Ma J.J., Wang J., Wang L.J., Zhu Q.Y., ZhaoH.H., Liu Z.M., Zhang X.M., Liu T., Pei S.R., Li Z.M., Hu Y., Yang Y.H., LiW.Z., Zan Y.J., Zhou L.H., Lin J.X., Yuan T.Q., Li W., Li Y., Wei H.R. & WuX.The Chinese pine genome and methylome unveil key features of coniferevolution[J]. Cell, 2022, 185(1):1-14.
2021年7月15日,由福建农林大学、中国农业科学院(深圳)农业基因组研究所等多家单位共同合作在国际顶级期刊Nature Genetics上发表“Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis”的文章,该研究利用自主开发的新算法破译了高杂合铁观音的基因组组装难题,并在此基础上阐释了等位特异性表达应对”遗传负荷”的机制及茶树群体进化和驯化历史,为茶树育种改良提供了新见解。安诺优达为本次研究提供二代和PacBio三代建库测序服务。
文章名称:Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis 发表时间:2021年7月15日 发表杂志:Nature Genetics 研究物种:茶树(Camellia sinensis) 影响因子:38.330 研究背景 样本选择 山茶植株芽、根、茎、花、幼叶和成熟叶 测序策略 DNA: PacBio Sequel II平台基因组测序 114X Illumina NovaSeq 150 bp双端测序,DNA小片段文库 Illumina NovaSeq,Hi-C文库 99.4X RNA: PacBio Sequel II平台,Iso-Seq文库 研究思路
研究结果 1. 基因组组装与注释 2. 等位基因特异性表达 3. 茶树遗传变异和群体结构分析 4. 大叶茶和小叶茶的进化史和驯化史 小结 安诺优势 作为国内基因组行业知名企业,安诺基因拥有实力强大的测序服务平台,配备系列先进仪器设备,三代PacBio(1台Sequel IIe+7台Sequel II+10台Sequel)为您的科研之路保驾护航;专业的生物信息分析团队,丰富的项目分析经验,让您的数据分析之途无忧。安诺基因已与中国农业大学、中科院遗传与发育所、中国海洋大学、中国农业科学院、福建农林大学等多家科研院所开展了深度合作,助力基因组文章发表于Nature、Nature Plants、Nature Communications、Molecular Plant、Communications Biology、The Plant Journal等多个国际高水平期刊。 参考文献: Zhang X, Chen S, Shi L, et al. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis [published online ahead of print, 2021 Jul 15]. Nat Genet. 2021;10.1038/s41588-021-00895-y.
2021年7月12日,福建省淡水水产研究所薛凌展团队联合福建师范大学、华中农业大学和维也纳大学等单位,在Genome Biology在线发表题为Telomere-to-telomere assembly of a fish Y chromosome reveals the origin of a young sex chromosome pair的论文,从染色体层面解析了大刺鳅基因组,对性染色体的起源及重组抑制进行了相关研究,构建了鱼类Y染色体完整图谱,提出动物性染色体近着丝粒起源的假说。安诺优达在本研究中提供了三代测序、Hi-C辅助组装以及RNA-Seq等多组学测序技术和服务。
文章名称:Telomere-to-telomere assembly of a fish Y chromosome reveals the origin of a young sex chromosome pair(鱼Y染色体的端粒对端粒组装揭示了年轻的性染色体对的起源)
发表时间:2021年7月12日
发表杂志:Genome Biology(13.583)
样本选择
测序策略
DNA:
PacBio Sequel II平台基因组测序,构建20 kb文库
Illumina HiSeq X Ten测序,构建Hi-C文库
Illumina NovaSeq 6000测序,构建DNA小片段文库
RNA:
Illumina HiSeq X Ten测序,构建RNA文库
研究背景
性染色体起源需要在原性染色体之间建立重组抑制。在许多鱼类物种中,性染色体对是最近起源的同态染色体。要弄清重组抑制是如何在性染色体早期分化阶段发生的,就需要合适的研究物种及其高完整度的基因组。
大刺鳅隶属于合鳃目,具有性逆转的现象。其Y染色体具有更早期的起源,这为研究Y染色体退化的早期阶段提供了标本。然而Y染色体连接区域具有大量重复序列和异染色质化,很难通过二代测序的短读长进行组装拼接。通过三代测序CCS模式(环状重复测序)产生的HiFi reads准确率超过99.5%,读长达20 kb,且无需家系信息,可进行高准确度和完整度的基因组组装。研究团队选择大刺鳅作为研究样本,利用三代和Hi-C测序技术进行二倍体基因组组装,期望通过年轻的性染色体对的单倍型基因组组装解析性染色体分化的早期问题。
研究思路
研究结果
01
单倍型解析的染色体水平组装
研究团队提取了雄性大刺鳅的肌肉组织DNA进行PacBio三代测序,产生30 G的HiFi数据,结合Hi-C数据进行基因组辅助组装,获得了高质量染色体水平的基因组。k-mer分析表明,HiFi读取错误率仅为0.086%,基因组大小为600.1 Mb,contig N50为9.9 Mb。组装获得大刺鳅的基因组序列可独立产生两个染色体水平的单倍体基因组hap-X和hap-Y(图1)。通过7个鲈形总目(Percomorpha)物种和一个外群物种Acanthochaenus luetkenii(一种基生棘鳍目鱼类)的全基因组比对数据,确认了大刺鳅与亚洲沼泽鳗有密切的亲缘关系,并估计它们在大约3,600万年前彼此分化。
图1 单倍型基因组组装
02
着丝粒卫星的基因组和细胞遗传学鉴定
大刺鳅高质量的基因组组装有助于解析染色体复杂区域。为了鉴定着丝粒卫星DNA,团队根据基因组注释获取了两个拷贝数较大的卫星序列,单体长度分别为524 bp(命名为CEN-524)和190 bp(命名为Tel-190)。CEN-524通常出现在每条染色体上的一个位点上。在端着丝粒染色体中,它出现在染色体的一端,在中部和亚中部着丝粒染色体中,它出现在中间。因此Cen-524被验证为候选着丝粒卫星。Tel-190只出现在染色体的末端,Tel-190被认为与端粒有关。为了进一步验证候选着丝粒卫星,利用荧光原位杂交对Cen-524和Tel-190探针进行杂交,发现它们在染色体上的位置与基因组组装序列位置基本一致(图2)。
图2 着丝粒卫星的基因组和细胞遗传学鉴定
03
年轻的性染色体分析
研究团队使用雄性特异性标记来区分X和Y染色体,为了进一步划分完全性连锁区(sex-linked region,SLR),选用10个雄性和10个雌性个体进行重测序,并筛选与性别相关的变异,分析发现了年轻的性染色体。Y染色体上~7Mb序列被发现与性别有关,与假常染色体区(pseudoautosomal region,PAR)或常染色体相比,显示出高密度的雄性特异性突变,雄性和雌性之间的分化增加。由此推测SLR跨越着丝粒,染色体的两端是PAR。这表明物理上靠近着丝粒的位置可能是SLR缺乏重组的原因。
根据雄性特异性变异的密度和内含子序列的X-Y差异,将SLR分为R1和R2两个区域。在这两个区域中,X-Y序列差异接近1%,表明两者起源很近。由于短臂异染色质位于着丝粒附近,推测短臂异染色质可能起源于着丝粒周围异染色质(pericentromeric heterochromatin,PCH)。通过转录组分析,检测雄性、雌性和间性个体(发生性逆转个体)性腺中SLR基因的表达谱,获得两个特异性表达的基因SYCE3和HMGN6。SYCE3可能参与成熟睾丸的精子发生或其他生物学过程,而HMGN6是指导睾丸发育的性别决定候选基因。
图3 性连锁区域的鉴定
04
着丝粒周围存在异染色质结构域
为了确定着丝粒周围区域的边界,研究团队检测了染色体重复丰度。着丝粒周围区域(~4 Mb)具有较高的重复序列、较低的基因密度、较低的重组率和更频繁的H3k9me3修饰,与PCH一致。大多数PCH长约4.2 Mb,其大小仅与染色体大小呈弱相关且不显著。较小的染色体,特别是端着丝粒和近中着丝粒染色体,具有较大比例的PCH,包括XY染色体。在着丝粒周围区域,较大物理距离上的染色质相互作用更为频繁,与其较高的折叠和压缩程度特征一致。着丝粒周围区域比其他区域有更大比例的高表达水平和宽度的基因,与前人研究观点一致,即H3K9me3在基因抑制中的作用有限,可能存在其他表观遗传修饰调节PCH中的基因表达(图4)。
图4 着丝粒周围异染色质对基因组区室化的影响
文章小结
本文利用PacBio三代HiFi测序数据和Hi-C测序数据组装出了大刺鳅高质量的染色体水平的基因组,从染色体层面解析了大刺鳅基因组。结合转录组数据分析,获得SLR中两个特异性表达的基因SYCE3和HMGN6,其中HMGN6是指导睾丸发育的性别决定候选基因。本文对性染色体的起源及重组抑制进行了相关研究,构建了鱼类Y染色体完整图谱,提出了动物性染色体近着丝粒起源的假说,为性染色体起源的研究提供了新线索。
作为国内基因组行业知名企业,安诺基因拥有实力强大的测序服务平台,配备系列先进仪器设备,三代PacBio(1台Sequel IIe+7台Sequel II+10台Sequel)为您的科研之路保驾护航;专业的生物信息分析团队,丰富的项目分析经验,让您的数据分析之途无忧。安诺基因已与中国农业大学、中科院遗传与发育所、中国海洋大学、中国农业科学院、福建农林大学等多家科研院所开展了深度合作,助力基因组文章发表于Nature、Nature Plants、Nature Communications、Molecular Plant、Communications Biology、The Plant Journal等多个国际高水平期刊。
参考文献
Lingzhan Xue, Yu Gao, Meiying Wu, et al. Telomere-to-telomere assembly of a fish Y chromosome reveals the origin of a young sex chromosome pair[J]. Genome Biology. 2021, 22(1): 203.